GRADO EN INGENIERÍA QUÍMICA

Fundamentos de Ingeniería Química

Hoja 4. Balances de Materia y Energía

1.- Calcular la variación de entalpía asociada a la transformación 1 kg de hielo a presión atmosférica y 253 K en vapor de agua sobrecalentado a 423 K y presión atmosférica. Datos:

Calor específico (kJ/kg. $^{\circ}$ C): H₂O_(s): 2,05; H₂O_(l): 4,18; H₂O_(v): 2,02 Calor latente del agua a 1 atm. (kJ/kg): fusión: 333; vaporización: 2.257

Sol.: 3.150 kJ/kg

2.- En una instalación industrial se obtiene metanol por conversión catalítica de CO₂ y H₂, según la reacción:

$$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$$

Los gases de salida del convertidor pasan a un condensador donde se retiene el metanol y el agua, mientras los gases residuales se recirculan al reactor, excepto una pequeña cantidad que se purga para evitar que aumente la concentración de inertes (N_2) en el sistema. La proporción de CO_2 y H_2 en la alimentación es la estequiométrica y el contenido de gases inertes es de 0,5 mol/100 mol de $CO_2 + H_2$. La conversión en el reactor es del 58%, siendo la concentración máxima admisible de inertes en los gases de entrada al mismo de 4,5 mol/100 mol de $CO_2 + H_2$.

Determínese:

- a) La proporción de gases purgados a la salida del condensador.
- b) El caudal y la composición de la mezcla gaseosa a la entrada del reactor.
- c) Determínese el caudal de agua de refrigeración que debe utilizarse en el condensador considerando que ésta se alimenta a 15 °C y sale a 45 °C y que los gases entran al equipo a 325°C y salen a 25°C a una presión de trabajo de 20 atm.

Datos:

Calores específicos medios (J/mol.°C): CO₂: 41,80; H₂: 28,42 ; N₂: 30,52; H₂O_(l): 75,24 ; H₂O_(v): 35,28; CH₃OH_(l): 89,60; CH₃OH_(v): 62,72.

Calor latente de vaporización H_2O a 20 atm.: 33.930 J/mol ($T_{eq} = 213$ °C).

Calor latente de vaporización del CH₃OH a 20 atm.: 24.480 J/mol (T_{eq} = 168 °C).

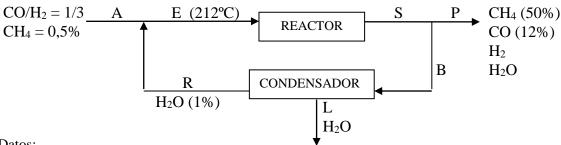
Sol.: a) 6,7%; **b)** 104,5 mol/h (CO₂: 23,9%; H₂: 71,8%; N₂: 4,3%); **c)** 14,99 kg/h agua

- 3.- Un procedimiento para obtener cianuro de hidrógeno consiste en tratar metano con amoniaco sobre un catalizador de platino a 1250°C. Los reactantes se alimentan al reactor a 400°C y la corriente de salida del mismo lo abandona a la temperatura de reacción, es decir, 1250°C. El gas efluente del reactor está constituido por: HCN = 23,5% ∴NH₃ = 3,4% ∴CH₄ = 2,6% ∴ H₂ = 70,5%. Calcúlese:
 - a) La conversión, referida al reactante que se encuentra en defecto.
 - b) La razón molar CH₄/NH₃ utilizada.
 - c) El calor que hay que aportar al reactor por cada 100 kmol/h de HCN producido.

Datos:

Entalpías de formación a 25°C (kcal/mol): CH_4 : -17,89; NH_3 : -10,96; HCN=31,10

Calores específicos medios (kcal/kmol.K):CH₄: 17,1; NH₃: 13,5; HCN: 11,9; H₂: 7,4


Sol.: a) 90,04%; b) 0,97 kmol CH₄/kmol NH₃; c) 9.351.584 kcal/h

4.- Se desea mejorar un gas de síntesis aumentando su contenido en metano mediante la reacción:

$$CO + 3 H_2 \rightarrow CH_4 + H_2O$$

El esquema del proceso se muestra en la Figura. La alimentación fresca contiene CO y H₂, en relación molar 1/3, y 0,5% CH₄. El reactor opera adiabáticamente y la corriente gaseosa que abandona el mismo se divide en dos: una de producto (P), con un 50% CH₄ y un 12% CO, y otra (B) que pasa a través de un condensador para reducir su contenido en agua hasta el 1%, y se recircula al reactor. La corriente de alimentación fresca (A) tiene un caudal de 100 kmol/h. Calcúlese:

- a) El caudal de las corrientes P, L y R.
- b) La conversión en el reactor.
- c) La temperatura de los gases a la salida del reactor, si a la entrada del mismo es de 212°C.

Datos:

Calor de reacción a 25°C: – 93.571 kJ/kmol CH₄ (exotérmica)

Calores específicos medios (kJ/kmol °C): CO: 29,56; H₂: 29,6; CH₄: 50; H₂O_(v): 34,75;H₂O_(l): 75,24.

Calor latente de vaporización H_2O a 1 atm.: 40.630 kJ/kmol ($T_{eq} = 100^{\circ}\text{C}$)

Sol.: a) P: 40,9 kmol; L: 19,2 kmol; R: 1876,7 kmol; **b)** 7,9%; **c)** 227,2°C

5.- Un proceso para la obtención de formaldehído consiste en hacer reaccionar, a presión atmosférica, metanol en fase vapor con aire, en presencia de un catalizador de plata. La reacción que tiene lugar es la siguiente:

$$CH_3OH + \frac{1}{2}O_2$$
 \longrightarrow $CH_2O + H_2O$

El análisis de los gases en base seca a la salida del reactor es: 12,5% CH₃OH; 7,0% O₂; 18,8% CH₂O. La alimentación del metanol y el aire al reactor se realiza a 75°C, y los gases salen a una temperatura superior a 100°C. Calcular:

- a) La relación molar metanol/aire en la mezcla reaccionante.
- b) La conversión conseguida en el reactor.
- c) La temperatura de los gases de salida suponiendo que el 80% del calor de reacción en condiciones estándar se elimina del sistema.

Datos:

Calor de reacción a 25°C (kJ/kmol): - 163.100 (exotérmica)

Calores específicos medios (kJ/kmol.K):

 $CH_3OH_{(l)}$: 82,6; $CH_3OH_{(v)}$: 42,9; CH_2O : 34,3; O_2 : 29,1; $H_2O_{(v)}$: 33,5; $H_2O_{(l)}$: 75,4; N_2 : 29,0

Calor latente de vaporización del CH₃OH a 1 atm. (kJ/kmol): 35.300 (T_{eq} = 64,9°C)

Calor latente de vaporización del H_2O : $40.630 \ (T_{eq} = 100^{\circ}C)$

Sol.: a) 40 %; **b)** 60 %; **c)** 199°C

6.- Una caldera utiliza metano como combustible. Al quemador se alimenta aire en un 15% de exceso sobre el estequiométrico. El metano se alimenta a 25°C y el aire a 100°C. Los gases de combustión abandonan la caldera a 500°C. Determínese la cantidad de vapor de agua saturado a 20 atm que se produce en la caldera si a la misma se alimenta agua a 80°C.

Datos:

Calor de combustión del CH₄ (a 25°C): -55.600 kJ/kg.

Calores específicos medios en el intervalo de 25 a 500°C (kJ/kg.°C): CH_4 : 2,19; O_2 : 1,04; N_2 : 1,09; CO_2 : 0,95; $H_2O(1)$: 4,18 y $H_2O(v)$: 1,96.

Calor latente de vaporización H_2O a 1 atm: 2.257 kJ/kg ($T_{eq} = 100$ °C).

Calor latente de vaporización H_2O a 20 atm: 1885 kJ/kg (T_{eq} = 213 °C).

Sol.: 26.410 kg/h por cada 100 kmol/h de CH₄ alimentado.

- 7.- Se desea calentar una corriente acuosa de 100 m³/h desde 15 a 29°C. Para ello, se utiliza el calor desprendido en una caldera en la que se quema metano a presión atmosférica con un exceso de aire del 300% respecto del estequiométrico. A la caldera se introduce el metano a 100°C y el aire a 25°C, mientras que los gases de combustión se encuentran a 450°C. Calcular:
 - a) La composición de los gases de combustión en base seca.
 - b) El caudal de metano, en m³N/h, necesario para calentar el agua de la piscina.

Datos:

Calores específicos (C_p) medios en el intervalo de temperatura (kJ/kmol.°C):

 $CH_4\text{: }35,68 \ \therefore \ CO_2\text{: }37,15 \ \therefore \ H_2\text{: }28,84 \ \therefore \ O_2\text{: }29,39 \ \therefore \ N_2\text{: }29,05 \ \therefore \ H_2O_{(L)}\text{: }75,24 \ \therefore \ H_2O_{(V)}\text{: }35,28$ Entalpía de combustión a 25°C (ΔH_c^0 , kJ/kmol): CH_4 : -890.350

Calor latente de vaporización del agua (kcal/kg): 540 (1 atm, Teq =100 °C)

Sol.: a) $CO_2: 2,6\%$; $H_2O: 5,1\%$; $O_2: 15,4\%$; $N_2: 77,0\%$ **b)** $418 \text{ m}^3\text{N/h}$

- 8.- En el horno de una caldera de vapor se queman completamente 100 kmol/h de gas natural (91% CH₄, 5% C₂H₆, 3% C₃H₈ y 1% CO₂) con aire en exceso. El gas natural se alimenta a la caldera a 25°C mientras que el caudal de aire se introduce a la misma a 100°C. El calor generado en el proceso se aprovecha para producir vapor saturado a 80 atm a partir de una corriente de agua que se alimenta a 25 °C. En estas condiciones, determinar:
 - a) El caudal de calor desprendido de la caldera si se obtienen 1440 kg/h de vapor saturado.
 - b) El exceso de aire que debe emplearse si la temperatura de los gases de combustión que abandonan la caldera no puede superar los 1000 °C.

Datos:

Calores específicos (C_p) medios en el intervalo de temperatura (kJ/kmol.°C):

 $CH_4: \ 35,68 \ \ \therefore \ \ C_2H_6: \ 52,78 \ \ \therefore \ \ C_3H_8: \ 74,29 \ \ \therefore \ \ CO_2: \ 37,15 \ \ \therefore \ \ N_2: \ 29,06 \ \ \therefore \ \ O_2: \ 29,38 \ \ \therefore \ \ H_2O_{(L)}: \ 75,24 \ \ \therefore \ \ H_2O_{(V)}: \ 35,28$

Entalpías de combustión a 25°C (ΔH_c^0 , kJ/kmol): CH₄: -890.350 \therefore C₂H₆: -1.559.870 \therefore C₃H₈: -2.220.140

Calor latente de vaporización del agua (kJ/kmol): 40.630 (1 atm; T_{eq}: 100°C)

Calor latente de vaporización del agua (kJ/kmol): 25.582 (80 atm; T_{eq}: 295°C)

Sol.: a) 3671744 kJ/h **b)** 190 %